Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rate of stomatal opening, shoot hydraulic conductance and photosynthetic characteristics in relation to leaf abscisic acid concentration in six temperate deciduous trees.

Identifieur interne : 004538 ( Main/Exploration ); précédent : 004537; suivant : 004539

Rate of stomatal opening, shoot hydraulic conductance and photosynthetic characteristics in relation to leaf abscisic acid concentration in six temperate deciduous trees.

Auteurs : Kr T Aasamaa [Estonie] ; Anu S Ber ; Wolfram Hartung ; Ulo Niinemets

Source :

RBID : pubmed:11874723

Descripteurs français

English descriptors

Abstract

Correlations between leaf abscisic acid concentration ([ABA]), stomatal conductance (gs), rate of stomatal opening in response to an increase in leaf water potential (si), shoot hydraulic conductance (L) and photosynthetic characteristics were examined in saplings of six temperate deciduous tree species: Acer platanoides L., Padus avium Mill., Populus tremula L., Quercus robur L., Salix caprea L. and Tilia cordata Mill. Species-specific values of foliar [ABA] were negatively related to the mean values of gs, si, L and light- and CO2- saturated net photosynthesis (P(max)), thus providing strong correlative evidence of a scaling of foliar gas exchange and hydraulic characteristics with leaf endogenous [ABA]. In addition, we suggest that mean gs, si, L and Pmax for mature leaves may partly be determined by the species-specific [ABA] during leaf growth. The most drought-intolerant species had the lowest [ABA] and the highest gs, suggesting that interspecific differences in [ABA] may be linked to differences in species-specific water-use efficiency. Application of high concentrations of exogenous ABA led to large decreases in gs, si and P(max), further underscoring the direct role of ABA in regulating stomatal opening and photosynthetic rate. Exogenous ABA also decreased L, but the decreases were considerably smaller than the decreases in gs, si and Pmax. Thus, exogenous ABA predominantly affected the stomata directly, but modification of L by ABA may also be an important mechanism of ABA action. We conclude that interspecific variability in endogenous [ABA] during foliage growth and in mature leaves provides an important factor explaining observed differences in L, gs, si and Pmax among temperate deciduous tree species.

DOI: 10.1093/treephys/22.4.267
PubMed: 11874723


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rate of stomatal opening, shoot hydraulic conductance and photosynthetic characteristics in relation to leaf abscisic acid concentration in six temperate deciduous trees.</title>
<author>
<name sortKey="Aasamaa, Kr T" sort="Aasamaa, Kr T" uniqKey="Aasamaa K" first="Kr T" last="Aasamaa">Kr T Aasamaa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Botany and Ecology, University of Tartu, Riia 181, Tartu 51014, Estonia. kroot@zbi.ee</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Botany and Ecology, University of Tartu, Riia 181, Tartu 51014</wicri:regionArea>
<wicri:noRegion>Tartu 51014</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="S Ber, Anu" sort="S Ber, Anu" uniqKey="S Ber A" first="Anu" last="S Ber">Anu S Ber</name>
</author>
<author>
<name sortKey="Hartung, Wolfram" sort="Hartung, Wolfram" uniqKey="Hartung W" first="Wolfram" last="Hartung">Wolfram Hartung</name>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:11874723</idno>
<idno type="pmid">11874723</idno>
<idno type="doi">10.1093/treephys/22.4.267</idno>
<idno type="wicri:Area/Main/Corpus">004678</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004678</idno>
<idno type="wicri:Area/Main/Curation">004678</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004678</idno>
<idno type="wicri:Area/Main/Exploration">004678</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Rate of stomatal opening, shoot hydraulic conductance and photosynthetic characteristics in relation to leaf abscisic acid concentration in six temperate deciduous trees.</title>
<author>
<name sortKey="Aasamaa, Kr T" sort="Aasamaa, Kr T" uniqKey="Aasamaa K" first="Kr T" last="Aasamaa">Kr T Aasamaa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Botany and Ecology, University of Tartu, Riia 181, Tartu 51014, Estonia. kroot@zbi.ee</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Botany and Ecology, University of Tartu, Riia 181, Tartu 51014</wicri:regionArea>
<wicri:noRegion>Tartu 51014</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="S Ber, Anu" sort="S Ber, Anu" uniqKey="S Ber A" first="Anu" last="S Ber">Anu S Ber</name>
</author>
<author>
<name sortKey="Hartung, Wolfram" sort="Hartung, Wolfram" uniqKey="Hartung W" first="Wolfram" last="Hartung">Wolfram Hartung</name>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
</author>
</analytic>
<series>
<title level="j">Tree physiology</title>
<idno type="ISSN">0829-318X</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscisic Acid (analysis)</term>
<term>Abscisic Acid (physiology)</term>
<term>Carbon Dioxide (physiology)</term>
<term>Photosynthesis (physiology)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Shoots (physiology)</term>
<term>Plant Transpiration (physiology)</term>
<term>Prunus (physiology)</term>
<term>Quercus (physiology)</term>
<term>Salicaceae (physiology)</term>
<term>Sapindaceae (physiology)</term>
<term>Tiliaceae (physiology)</term>
<term>Trees (physiology)</term>
<term>Water (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide abscissique (analyse)</term>
<term>Acide abscissique (physiologie)</term>
<term>Arbres (physiologie)</term>
<term>Dioxyde de carbone (physiologie)</term>
<term>Eau (physiologie)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Photosynthèse (physiologie)</term>
<term>Pousses de plante (physiologie)</term>
<term>Prunus (physiologie)</term>
<term>Quercus (physiologie)</term>
<term>Salicaceae (physiologie)</term>
<term>Sapindaceae (physiologie)</term>
<term>Tiliaceae (physiologie)</term>
<term>Transpiration des plantes (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Abscisic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Abscisic Acid</term>
<term>Carbon Dioxide</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Acide abscissique</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Acide abscissique</term>
<term>Arbres</term>
<term>Dioxyde de carbone</term>
<term>Eau</term>
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Pousses de plante</term>
<term>Prunus</term>
<term>Quercus</term>
<term>Salicaceae</term>
<term>Sapindaceae</term>
<term>Tiliaceae</term>
<term>Transpiration des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Plant Shoots</term>
<term>Plant Transpiration</term>
<term>Prunus</term>
<term>Quercus</term>
<term>Salicaceae</term>
<term>Sapindaceae</term>
<term>Tiliaceae</term>
<term>Trees</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Correlations between leaf abscisic acid concentration ([ABA]), stomatal conductance (gs), rate of stomatal opening in response to an increase in leaf water potential (si), shoot hydraulic conductance (L) and photosynthetic characteristics were examined in saplings of six temperate deciduous tree species: Acer platanoides L., Padus avium Mill., Populus tremula L., Quercus robur L., Salix caprea L. and Tilia cordata Mill. Species-specific values of foliar [ABA] were negatively related to the mean values of gs, si, L and light- and CO2- saturated net photosynthesis (P(max)), thus providing strong correlative evidence of a scaling of foliar gas exchange and hydraulic characteristics with leaf endogenous [ABA]. In addition, we suggest that mean gs, si, L and Pmax for mature leaves may partly be determined by the species-specific [ABA] during leaf growth. The most drought-intolerant species had the lowest [ABA] and the highest gs, suggesting that interspecific differences in [ABA] may be linked to differences in species-specific water-use efficiency. Application of high concentrations of exogenous ABA led to large decreases in gs, si and P(max), further underscoring the direct role of ABA in regulating stomatal opening and photosynthetic rate. Exogenous ABA also decreased L, but the decreases were considerably smaller than the decreases in gs, si and Pmax. Thus, exogenous ABA predominantly affected the stomata directly, but modification of L by ABA may also be an important mechanism of ABA action. We conclude that interspecific variability in endogenous [ABA] during foliage growth and in mature leaves provides an important factor explaining observed differences in L, gs, si and Pmax among temperate deciduous tree species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11874723</PMID>
<DateCompleted>
<Year>2002</Year>
<Month>10</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0829-318X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>22</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2002</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Tree physiology</Title>
<ISOAbbreviation>Tree Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Rate of stomatal opening, shoot hydraulic conductance and photosynthetic characteristics in relation to leaf abscisic acid concentration in six temperate deciduous trees.</ArticleTitle>
<Pagination>
<MedlinePgn>267-76</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Correlations between leaf abscisic acid concentration ([ABA]), stomatal conductance (gs), rate of stomatal opening in response to an increase in leaf water potential (si), shoot hydraulic conductance (L) and photosynthetic characteristics were examined in saplings of six temperate deciduous tree species: Acer platanoides L., Padus avium Mill., Populus tremula L., Quercus robur L., Salix caprea L. and Tilia cordata Mill. Species-specific values of foliar [ABA] were negatively related to the mean values of gs, si, L and light- and CO2- saturated net photosynthesis (P(max)), thus providing strong correlative evidence of a scaling of foliar gas exchange and hydraulic characteristics with leaf endogenous [ABA]. In addition, we suggest that mean gs, si, L and Pmax for mature leaves may partly be determined by the species-specific [ABA] during leaf growth. The most drought-intolerant species had the lowest [ABA] and the highest gs, suggesting that interspecific differences in [ABA] may be linked to differences in species-specific water-use efficiency. Application of high concentrations of exogenous ABA led to large decreases in gs, si and P(max), further underscoring the direct role of ABA in regulating stomatal opening and photosynthetic rate. Exogenous ABA also decreased L, but the decreases were considerably smaller than the decreases in gs, si and Pmax. Thus, exogenous ABA predominantly affected the stomata directly, but modification of L by ABA may also be an important mechanism of ABA action. We conclude that interspecific variability in endogenous [ABA] during foliage growth and in mature leaves provides an important factor explaining observed differences in L, gs, si and Pmax among temperate deciduous tree species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Aasamaa</LastName>
<ForeName>Krõõt</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Institute of Botany and Ecology, University of Tartu, Riia 181, Tartu 51014, Estonia. kroot@zbi.ee</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sõber</LastName>
<ForeName>Anu</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hartung</LastName>
<ForeName>Wolfram</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Niinemets</LastName>
<ForeName>Ulo</ForeName>
<Initials>U</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>Tree Physiol</MedlineTA>
<NlmUniqueID>100955338</NlmUniqueID>
<ISSNLinking>0829-318X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>72S9A8J5GW</RegistryNumber>
<NameOfSubstance UI="D000040">Abscisic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000040" MajorTopicYN="N">Abscisic Acid</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027861" MajorTopicYN="N">Prunus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029963" MajorTopicYN="N">Quercus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031308" MajorTopicYN="N">Salicaceae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029631" MajorTopicYN="N">Sapindaceae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029646" MajorTopicYN="N">Tiliaceae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11874723</ArticleId>
<ArticleId IdType="doi">10.1093/treephys/22.4.267</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Estonie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Hartung, Wolfram" sort="Hartung, Wolfram" uniqKey="Hartung W" first="Wolfram" last="Hartung">Wolfram Hartung</name>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
<name sortKey="S Ber, Anu" sort="S Ber, Anu" uniqKey="S Ber A" first="Anu" last="S Ber">Anu S Ber</name>
</noCountry>
<country name="Estonie">
<noRegion>
<name sortKey="Aasamaa, Kr T" sort="Aasamaa, Kr T" uniqKey="Aasamaa K" first="Kr T" last="Aasamaa">Kr T Aasamaa</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004538 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004538 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11874723
   |texte=   Rate of stomatal opening, shoot hydraulic conductance and photosynthetic characteristics in relation to leaf abscisic acid concentration in six temperate deciduous trees.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11874723" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020